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a b s t r a c t

Abnormal behavior detection has been one of the most important research branches in intelligent video

content analysis. In this paper, we propose a novel abnormal behavior detection approach by introducing

trajectory sparse reconstruction analysis (SRA). Given a video scenario, we collect trajectories of normal

behaviors and extract the control point features of cubic B-spline curves to construct a normal dictionary

set, which is further divided into Route sets. On the dictionary set, sparse reconstruction coefficients and

residuals of a test trajectory to the Route sets can be calculated with SRA. The minimal residual is used

to classify the test behavior into a normal behavior or an abnormal one. SRA is solved by L1-norm

minimization, leading to that a few of dictionary samples are used when reconstructing a behavior

trajectory, which guarantees that the proposed approach is valid even when the dictionary set is very small.

Experimental results with comparisons show that the proposed approach improves the state-of-the-art.

Crown Copyright & 2013 Published by Elsevier B.V. All rights reserved.
1. Introduction

Abnormal behavior detection is important to video content under-
standing, with applications in intelligent video surveillance [1–4] and
content-based multi-media retrieval [1,5], etc. Research in abnormal
detection has made great progresses in recent years, such as
abnormal action detection [5,6], abnormal event detection [7–10],
and abnormal crowd detection [11–15]. All these methods can be
categorized into two parts, based on visual features of video stream
[10–13] or based on trajectory analysis [16–24]. In recent years,
trajectory analysis based methods received much attention when
performing visual abnormal behavior detection [12–18,30]. Although
extensively investigated, trajectory analysis is still an open research
topic with challenging problems, including the trajectory length
variation [19,22], the trajectory noise [20] and the limited sizes of
sample sets [16,21]. Researchers are putting a lot of effort into finding
more effective trajectory representation and modeling approaches.

In the early research, trajectory representations include repre-
sentative sequences corresponding to motion vectors [23], motion
vectors with acceleration information [24], etc. Since these
representations directly extracted the object positions and
velocities in video frames, they lead to variable feature length
and bring difficulties to the trajectory analysis. In the later
research, fixed-length vectors based on re-sampling and linear
interpolation [18,25] are proposed. These vectors can deal with
the problem of trajectory length variation, but the interpolation
013 Published by Elsevier B.V. All

Jing Shan District, Postcode:
often brings in redundant and noise information. Naftel and
Khalid [26] propose an efficient trajectory representation using
function approximation algorithms of Least Square Polynomial,
Cheybyshev Polynomial and Discrete Fourier Transform (DFT),
while the representations in transformation domain increase the
complexity of the representation. In Ref. [27], a more efficient
trajectory representation is proposed. Haar Wavelet Coefficients
and Least-squares Cubic Spline Curves Approximation (LCSCA) are
adopted as parametric feature vectors. These parametric feature
vectors are insensitive to the length of trajectories, providing a
general tool. The performance of these representations can be
optimized by selecting proper parameters. In this paper, we
follow the idea of Ref. [16] to extract trajectory representation,
and make a deep discussion about the selection of proper feature
parameters based on quantitative experiments.

On the other hand, various methods are investigated or
employed to model the trajectories on the representations. Cluster-
ing methods, such as Self-Organizing Map Neural Network [24] and
hierarchical Fuzzy K-means clustering [25], are used to classify
trajectories in an un-supervised manner and then build prototypes.
Test trajectories will be classified by their distances to the proto-
types. The used distances include Euclidean distance [17], Hausdorff
distance [19] or Dynamic Time Warping (DTW) [22,28] etc. The
disadvantages of these distances lie in that they cannot reflect the
statistical nature of behaviors. In other words, classification based
on distance measurement does not consider the different impor-
tance of features as a probabilistic or discriminative method. In
recent years, supervised learning methods, such as Gaussian Mixture
Models (GMMs) [16], Bayesian Model [12,21], Hidden Markov
Model (HMM) [29], One-Class Support Vector Machine (OC-SVM)
[7], Hierarchical Hidden Markov Model [29] and Nonparametric
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Bayesian Model [21], are employed in trajectory analysis. Given a
large training set, these methods can reach a good performance. But
when facing a small training set, the performance of these methods
cannot always be guaranteed. It is known that labeling trajectory
samples in video sequences always result in huge workload due
to the large amount of video data. Therefore, exploring trajectory
analysis approach for a small sample set is significant.

Inspired by the development of sparse reconstruction in face
recognition [31] and object tracking [32], we cast the trajectory
classification as a sparse reconstruction problem. Intuition behind
the sparse reconstruction lies in the fact that the coefficients imply
the discriminative information (some coefficients that can com-
pactly express the trajectory are nonzero and the others are almost
zero) among different trajectory patterns, which can be used
for classification. Sparse Reconstruction Analysis (SRA), solved by
L1-norm minimization, is suitable to represent and reconstruct a
behavior trajectory with a few of dictionary samples. In theory,
given an input test sampleyARm, we reconstruct it by a sparse
linear combination of an over-complete normal basis setF¼Rm�D,
where m5D. Therefore, this method is proposed to quantify the
normalness of trajectory via a sparse reconstruction from normal
ones. The reconstruction for a special behavior trajectory based on
all behavior trajectories is typically sparse. According to the sparse
theory [31,34,35], once sparseness is guaranteed, the size of sample
set has a little effect on classification performance. This guarantees
the classification performance of SRA with a small sample set,
which is the main advantage of this work compared with state-of-
the-art methods represented by Ref. [16], where a large sample set
is required to build the models.

The rest of the paper is organized as follows. In Section 2, we
introduce the trajectory representation and the abnormal beha-
vior detection approach, in Section 3, we present the experiments
with comparisons, and in Section 4 we conclude the paper with
the discussion of the future work.
Dictionary Set Construction

Normal behavior trajectory
collection

Categorizing the trajectories
into different Routesets

Trajectory samples represented
with LCSCA Thres holding the

reconstruction residuals

A test trajectory

Abnormal Behavior Detection

Trajectory representation with
LCSCA

Trajectory sparse
reconstruction analysis

Fig. 1. Framework of the proposed approach.
2. Methodology

In this section, we first present an overview of the proposed
abnormal behavior detection approach and then describe the
trajectory representation and the sparse reconstruction analysis.

2.1. Overview of the proposed approach

In this paper, based on a predefined trajectory dictionary set
for a fixed video scenario, we propose a novel abnormal behavior
detection approach using sparse reconstruction analysis. We first
collect a set of trajectories of normal behaviors from videos by
an object tracking algorithm [32] or a motion detection method
[14,29]. By observing their appearances, these trajectories are
manually categorized into different sub-sets, called Route sets.
For all the collected trajectories, the Least-squares Cubic Spline
Curves Approximation (LCSCA) features are extracted for repre-
sentations and then construction of the dictionary set.

When performing abnormal behavior detection, each test
trajectory will also be represented with LCSCA features. Then,
we introduce the sparse reconstruction analysis on the normal
dictionary set to classify the testing motion trajectories of objects,
where our objective is to reconstruct the test trajectory with as
few dictionary samples as we can. The L1-norm minimization
is used to solve the reconstruction coefficients, on which the
reconstruction residuals of each Route set can also be calculated.
The minimal reconstruction residual is used to classify the test
trajectory into a norm behavior or an abnormal one with an
empirically defined threshold. The framework of the proposed
approach is shown in Fig. 1.
2.2. Trajectory representation

Since motion trajectories consist of coordinate sequences of
different length and are extracted on different frame numbers, we
use the control points of LCSCA to extract fixed-length parametric
vectors as feature representation. This is achieved by approximat-
ing each spatial-temporal trajectory with a uniform cubic B-spline
curve [33] parameterized by time (frame number). Cubic B-spline
curve [33] can be thought of a method for defining a sequence to
approximate the form of trajectory. A spline curve is a sequence of
curve segments that are connected together to form a single
continuous curve (here trajectory). Further mathematical explana-
tion is shown in the Ref. [33]. Because of the number of control
points and weight factors, the representation of the basis is flexible
for simple or complicated shape of curves. Given a trajectory
sequence in (x, y, t) space, we use B-spline control points to
represent both the shape and spatio-temporal profiles of a trajec-
tory T ¼ fðx1,y1Þ,ðx2,y2Þ, � � � ,ðxt�1,yt�1Þ,ðxt ,ytÞg in a parametric way

F ¼ fCX
1 ,CX

2 , � � � ,CX
p ,CY

1 ,CY
2 , � � �CY

p g, where p is the number of control

points and t is the length of trajectory [16], CX
p is the normalized x

coordinate of pth control point, and CY
p is the normalized y coordi-

nate of pth control point. Fig. 2 shows a normal and an abnormal
trajectories, respectively.

The transformation procedure of the trajectory representation
is as follows:
(1)
 Define the parameter vectors¼ f0,s2, � � � st�1,stg,

sn ¼

Pn
i ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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is the total distance tra-
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where t denotes a knot vector with pþ4 elements.

(2)
 Calculate the cubic B-spline basis function with the following

recursive formulation according to De-Boor algorithm [33]

Bp,1 snð Þ ¼
1 if tprsnotpþ1

0 otherwise
,

�

Bp,m snð Þ ¼
sn�tp

tpþm�1�tp
Bp,m�1 snð Þþ

tpþm�sn

tpþm�tpþ1
Bpþ1,m�1 snð Þ ð3Þ



Fig. 2. Trajectory representation when p¼7. (a) Top: a normal trajectory sample; bottom: the feature, representation with LCSCA. (b) Top: an abnormal trajectory sample;

bottom: the feature representation with LCSCA.
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where tp is the pth knot of above-mentioned t vector, and m

denotes the order of the function (the initialized value of m is
4 for cubic splines).
(3)
 Find the control points by (4), which minimizes the sum of
squared errors between the original trajectory and its approx-
imation

FXY
¼FyTXY , ð4Þ

where

F¼

B1,4 s1ð Þ � � � Bp,4 s1ð Þ

^ & ^

B1,4 stð Þ � � � Bp,4 stð Þ

8><
>:

9>=
>; and Fy ¼FTF�1FT
2.3. Sparse reconstruction analysis

In this section, we address the problem of trajectory classification.
As mentioned in Section 1, it is reasonable to make a hypothesis that
the test trajectories can be approximately represented with a linear
superposition of the sample set. Supposing that there are J behavior
patterns (called Routes) in a surveillance scene, and each Route
Aj ¼ fa

1
j ,a2

j ,:::,aK
j gholds K behavior trajectories, we can have the union

sample set in the scene as follows:

B¼ [ fAjg ¼ fa
1
1,a2

1,:::,aK
1 ,a1

2,a2
2,:::,aK

2 ,:::,aK
J g, j¼ 1,:::,J ð5Þ

For a test trajectory represented by above mentioned control
point feature Ft , we calculate the sparse linear reconstruction
coefficients c on set B as (6)

Bc� Ft ð6Þ

where Ft is the LCSCA representation vector of the test trajectory,
c¼ fck
j g, j¼ 1,:::,J, k¼ 1,:::,K and ck

j is the reconstruction coeffi-
cient corresponding to the kth sample of jth Route in B.

In the real condition of a surveillance scene, the sample set of the
training trajectories (in this case, a sample is a representative vector
of a normal trajectory) is always quite large, then there may be
many redundant samples in the set, which leads to a sparse
coefficient vector of the linear superposition. Therefore, a few of
samples that are similar with the given input trajectory will be
activated, but the whole coefficient vector remains sparse, suppos-
ing there are r nonzero coefficients in c¼ fck

j g, r is less than 5% of K

in the statistical experiment, where r5K. By this token, the object
has an r-sparse representation based on the sample set. The number
of the nonzero coefficients is denoted by :c:0. Minimizing :c:0 is
the principal to obtain a sparse representation, which is, however,
an NP-hard problem. Recent development in the theory of com-
pressed sensing [36] shows that the solution of L1-norm minimiza-
tion subject to a linear system of the samples can be used to find
sparse enough representation of the test sample. The resulting
optimization problem, similar to the Least Absolute Shrinkage and
Selection Operator (LASSO) in statistics [37], which is a constrained
optimization problem for estimating regression coefficients to the
least squares criterion, penalizes the L1-norm of the coefficients in
the linear combination, rather than directly penalizing the number
of nonzero coefficients :c:0. In terms of the set B and the test
sample Ft , a sparse representation is computed as follows:

argmin:c:1, s:t:Bc¼ Ft ð7Þ

where JUJ1 denotes the L1-norm. The property of the sparse
representation guarantees that the test sample is represented in
the most compact way based on the sample set. That is to say,
sample-based sparse reconstruction analysis selects a small subset,



Fig. 3. Illustration of sparse reconstruction coefficients (a) a test trajectory of class 7, (b) the corresponding coefficients, (c) the corresponding residuals, and (d) proportion

of the trajectory belongs to normal.

1 Thanks to the kindly help of Rowland Sillito about the dataset, which were

used for anomalous trajectory detection in Ref. [16].
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in which the samples are the most representative ones, such as parts
of or the whole object.

When we obtain a test sample Ftwith its corresponding sparse
reconstruction coefficients, we build a classifier by calculating the
residuals between the sparse reconstructions with each sample in
the set B. Firstly, we define a characteristic function dj for each class,
which keeps the sparse coefficients corresponding to jth class in B

and sets the coefficients to zero of the other classes. Then the
sparse reconstruction residuals based on each trajectory class can be
defined as

rj Ftð Þ ¼ :Ft�BdjðcÞ:2, j¼ 1. . .J ð8Þ

and a threshold y is used to discriminate the new example as
abnormal if the result is negative, as in (9). Finally, if the new
example is regarded as a normal trajectory, the trajectory pattern
can be classified according to (10). The threshold y is set as 0.03
empirically. In other words, when there was a Hj less than 0.03, the
new example is an outlier of sample set space. For instance, Fig. 3
shows the sparse reconstruction coefficients, the reconstruction
residuals based on each class and proportion of the trajectory
belongs to class 7, where the horizontal ordinate denotes the
identifier of class. Many nonzero coefficients are from class 7 in
Fig. 3(b), and the minimum of residuals denotes the classification
result in Fig. 3(c). Because all of the H values are more than
threshold in Fig. 3(d), the trajectory (shown in Fig. 3(a)) is deter-
mined as normal.

Detect Ftð Þ ¼ signðmin
j ¼ 1...J

Hj�yÞ, where Hj ¼
1=rj Ftð ÞPJ

i ¼ 1 1=rj Ftð Þ
ð9Þ

Classify Ftð Þ ¼ argmin
j

rj Ftð Þ ð10Þ

3. Experiments

In this section, we carry out experiments with comparisons in
order to validate the proposed approach and demonstrate its
advantages. There are two groups of experiment, multiple trajec-
tory representations are carried out with comparisons, and com-
parisons of the proposed method with GMMs based method [16]
are carried out on CAVIAR [38] dataset and NGSIM (Lankershim)
[39] dataset.

3.1. Experiments for multiple representation comparisons

In this group of experiment, the used dataset is publicly
available CAVIAR [38] dataset, which contains a series of beha-
viors in the entrance lobby of INRIA lab. There are 11 entry-exit
Routes appeared in the dataset. The size of surveillance video
frame is 640�460, and each trajectory consists of a sequence of
x-coordinates and y-coordinates, which are the center positions of
moving objects in the frames.

Considering the traversal orientations, we obtain totally 22 types
of normal trajectories for behavior analysis (each type holding 100
simulated tracks shared by Rowland Sillito1). Some examples from
each of the Routes from dataset are visualized and shown in Fig. 4. In
the detection procedure, we choose 21 trajectories to represent the
normal behaviors, consisting of people walking directly from one exit
to another and 19 trajectories to define abnormal behaviors, consist-
ing of people fighting, falling down, leaving or collecting packages, as
test samples.

To choose proper parameters and quantitatively validate the
proposed approach, DACC (Detection ACCuracy) and CCR (Correct
Classification Rate) are defined as follows:

DACC¼
TPþTN

The total of test behaviors
ð11Þ

CCR¼
The number of correct route classification

The total of normal test behaviors
ð12Þ



Route 1 Route 2 Route 3

Route 4 Route 7Route 5 Route 6

Route 8 Route 9 Route 10 Route 11

Fig. 4. Route examples of the dataset [38].
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where TP (True Positives) is the number of trajectories correctly
detected as normal behaviors, and TN (True Negatives) is the
number of trajectories correctly detected as abnormal behaviors.
DACC is used to evaluate the performance of normal–abnormal
behavior detection and CCR is used to evaluate the performance
of Route classification when a trajectory has already classified as a
normal behavior. In the experiments the higher the two rates are,
the better the performance is.

For trajectory representation, we defined two kinds of feature

vectors: R1 and R2. R1 is defined as the sequence F ¼ fCX
1 ,CX

2 , � � � ,

CX
p ,CY

1 ,CY
2 , � � �CY

p g calculated in Section 2.2; R2 contains F and

the coordinates of the entry and exit positions. To determine the
appropriate values of p (the number of control points), we
calculate the second derivative of approximation deviation for
different p, and find that the second derivative reaches its mini-
mum when p¼5, 7, 9, or 11. The approximation deviation is the
median of the distances between all control points with their
nearest trajectory points. Therefore, we set p¼{5, 7, 9, 11} for
performance comparisons.

The average DACC and CCR of 10 trails based on R1 are shown in
Fig. 5. In the CAVIAR lobby scenarios, by adjusting the parameter p,
it is observed that when p¼5, a better DACC¼90.42%(73.85%) and
CCR¼70.09%(76.13%) are obtained (as shown in Fig. 5). The figure
also shows the variations of DACC and CCR when K increases, where
K is the number of the samples in each kind of Route. When K is set
as small as 5 (a very small dictionary set), 84.75% DACC and 62.38%
CCR can be obtained, showing the effectiveness of the proposed
approach even when the dictionary set (sample set) is small.

The results when adding the coordinates of the entry and the exit
into R1 (called R2 representation) are shown in Fig. 6. When p¼5,
obtained DACC¼83.75% (72.88%) and CCR¼68.15% (74.53%) are
still steadily higher than the others. Besides, a 81.75% DACC and
63.81% CCR can be obtained when K¼5. Compared with the results
reported by R1 (Fig. 5), R2 reports a worse performance. The reason
lies in that trajectories sharing the same entry or exit can sometimes
been classified as the same behavior with our SRA method.

3.2. Experiments for performance comparisons

In this group of experiment, two different datasets are used to
demonstrate the advantages of the proposed method. One is afore
mentioned CAVIAR dataset and the other is NGSIM (Lankershim)
dataset. The NGSIM (Lankershim) dataset consists of 1213 beha-
vior trajectories in a crossroad scenario. There are four Routes
(similarly, considering the traversal orientations, there are eight
types of normal trajectories for behavior analysis) appeared in
the scenario. The size of surveillance video frame is 720�576.
800 of the normal examples are used for training and 45 normal
examples, along with 12 anomalous examples, for testing.

We compare our proposed SRA approach with the Gauss Mixture
Models (GMMs) based method [16] which is the state-of-the-art on
visual abnormal trajectory detection. Both methods use the same
sample set and test set. In the CAVIAR lobby scenario, if we adjust the
number of the samples in each Route K, Fig. 7 shows the variations of
DACC with respect to K, where DACC is the average of 10 trails based
on R1 with p¼7. It shows that our approach achieves a better
performance than GMMs, especially when K is small. As for the
previous dataset, performance measure (DACC) is taken in the
NGSIM (Lankershim) scenario. The situation is similar using the
same empirical threshold. Fig. 8 illustrates the changes in perfor-
mance observed: detection performance (DACC) steadily improves
with respect to K, which is the number of the samples in each Route.
Although the threshold is probably arbitrarily chosen, it shows that
our approach achieves a better performance than GMMs, especially
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Fig. 5. Results of (a) DACC, and (b) CCR based on R1.
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when K is small. This shows that by sparse reconstruction we could
compactly represent the trajectories even when the sample set is
small while existing GMMs need a larger training set to reach a good
performance.
4. Conclusions and future work

In this paper, we propose a novel trajectory-based visual abnormal
behavior detection approach with sparse reconstruction analysis. The
new concept and technique introduced in this paper include trajec-
tory analysis, trajectory linear reconstruction, the trajectory dictionary
set and Route set. Whether a testing sample is abnormal or not
is determined by its sparse linear reconstruction coefficients and
residuals, through a linear reconstruction of the normal dictionary set.
Thanks to the flexibility of the LCSCA representation and the
employed SRA method, our approach reports an efficient and robust
detection. Experimental results on a real-world dataset show the
good performance of our proposed approach on different sizes of
samples. The comparison to the state-of-the-art is also provided,
which indicates that the proposed approach achieves a better result
even though a smaller dictionary set is used. A known disadvantage
of the proposed method is that the detection performance affected
by the control point parameter, which should be improved in the
future work.
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